
MARTIN HELMICH @mittwald

HOW TO PISS OFF
YOUR HOSTING PROVIDER

(WITH LOAD TESTING)

MODERATELY ANNOY

MARTIN HELMICH

mittwald
Head of Architecture &
Developer Relations

TYPO3 Association
Board Member

PHWT
Lecturer, Software Engineering
& Cloud Computing

https://pixabay.com/photos/mother-and-daughter-picnic-storytime-2629795/

ONCE UPON A

TIME…

ADD TO CART

MY LITTLE ONLINE SHOP

_ Built on WooCommerce
_ Built by a solo developer

ADD TO CART

*

*) not the actual ugly sweater

Ideal for parties, awkward dates
and repelling people with good
taste

199,- €

This webpage is not available

ERR_SERVER_TOO_WEAK

Reload

MY LITTLE ONLINE SHOP

_ Built on WooCommerce
_ Built by a solo developer
_ Sells only one (particularly ugly)

article...
_ ...for a major german rapper
_ ...who had just released a new

album

Tim Mossholder
https://unsplash.com/photos/white-smoke-on-black-background-GoHaYpu7-ks

REASONS FOR FAILURE
RESOURCE EXHAUSTION (CPU, MEMORY, BANDWIDTH) ·
ARCHITECTURAL BOTTLENECKS · SHITTY PROGRAMMING ·
SERVER MISCONFIGURATION · IT’S ALWAYS DNS

https://unsplash.com/photos/white-smoke-on-black-background-GoHaYpu7-ks

https://pixabay.com/photos/mother-and-daughter-picnic-storytime-2629795/

STORY

TIME…

Own work

Own work

The festival “under test”

https://unsplash.com/photos/man-in-grey-t-shirt-playing-dj-mixer-nu7AOx73UOM

Large(st) EDM Festival | NRW, Germany | ~225k Total visitors
TYPO3 CMS v13
Single Server Setup (192 Cores, 512GB RAM)

The festival “under test”

Note:
Image from original presentation not included for copyright reasons.

https://unsplash.com/photos/man-in-grey-t-shirt-playing-dj-mixer-nu7AOx73UOM

CHOOSE YOUR

TOOLS

martin @ local $ ab -k -c 100 -t 60 https://my-loadtest.example/

This is ApacheBench, Version 2.3 <$Revision: 1903618 $>
Copyright 1996 Adam Twiss, Zeus Technology Ltd, http://www.zeustech.net/
Licensed to The Apache Software Foundation, http://www.apache.org/

Benchmarking my-loadtest.example (be patient)
Finished 50000 requests

Server Software: Apache/2.4.59
Server Hostname: my-loadtest.example
Server Port: 80

Document Path: /
Document Length: 17620 bytes

Concurrency Level: 100
Time taken for tests: 6.045 seconds
Complete requests: 50000
Failed requests: 14
 (Connect: 0, Receive: 0, Length: 14, Exceptions: 0)
Keep-Alive requests: 49554
Total transferred: 894980321 bytes
HTML transferred: 880753320 bytes
Requests per second: 8270.99 [#/sec] (mean)
Time per request: 12.090 [ms] (mean)
Time per request: 0.121 [ms] (mean, across all concurrent requests)
Transfer rate: 144577.66 [Kbytes/sec] received

Connection Times (ms)
 min mean[+/-sd] median max
Connect: 0 0 0.1 0 3
Processing: 0 12 5.2 11 59
Waiting: 0 12 5.2 11 59
Total: 0 12 5.3 11 62

Percentage of the requests served within a certain time (ms)
 50% 11
 66% 13
 75% 14
 80% 15
 90% 18
 95% 21
 98% 25
 99% 29
 100% 62 (longest request)

LOAD TEST REQUIREMENTS

_ Mimic user behaviour realistically
_ Verify if service level objectives (SLOs) are met
_ CI/CD integration

https://k6.io/

import http from 'k6/http';
import { check } from 'k6';

export const options = {
 vus: 1,
 duration: '20s',
};

export default function() {
 const res = http.get('https://my-loadtest.example');

 check(res, {
 'is status 200': r => r.status === 200,
 });
}

The DEFAULT EXPORT determines
how a virtual user should behave

Configure how many
VIRTUAL USERS k6 should test with
(and for how long)

SCENARIO:
START OF TICKET SALE

50k visitors, 25k of those in the first 5min“ ”

SCENARIO:
START OF TICKET SALE 50k visitors, 25k of those in the first 5min

5k/min × 5min 5k/min − (500 × (t−5min) × 10min

NOTE:
1 visit ≃ 120 HTTP requests
5000 visits/min

≃ 600.000 reqs/min
≃ 10.000 reqs/sSPIKE TEST

SCENARIO:
START OF TICKET SALE 50k visitors, 25k of those in the first 5min

RAMP-UP PHASE

5k/min × 5min 5k/min − (500 × (t−5min) × 10min

SPIKE TESTS
_ If your caches aren’t warmed up

already — it’s too late now.

_ Auto-scaling won’t help you.

_ Common DDoS mitigations might
be actively harmful, because
they might block legitimate
traffic

100% 95%

INDEX TICKETS

10
0

%

LINE-UP

CAMPING
GROUND

SIMULATING A USER
(simplified)

SCENARIO:
_ Start of ticket sale

OTHER SCENARIOS:
_ Artist announcements
_ On-location traffic during the festival
_ “Regular” visit

HTTP LOAD TESTING
vs

BROWSER TESTING

WHAT METRIC TO OPTIMIZE FOR?

THIS ONE?

OR THIS?

CORE WEB VITALS

LOADING · Largest Contentful Paint (LCP)
INTERACTIVITY · Interaction to Next Paint (INP)
VISUAL STABILITY · Cumulative Layout Shift (CLS)

, First Contentful Paint (FCP)

WHAT METRIC TO OPTIMIZE FOR?

CC-BY
https://web.dev/articles/lcp

LOADING · Largest Contentful Paint (LCP)
CORE WEB VITALS

GOOD NEEDS
IMPROVEMENT POOR

2.5sec 4sec

https://web.dev/articles/lcp

import { browser } from 'k6/browser';
import { check } from 'k6';

export const options = {

};

define a BROWSER TEST

 scenarios: {
 ui: {
 executor: 'constant-vus',
 vus: '20',
 duration: '15min',
 options: {
 browser: {
 type: 'chromium',
 },
 },
 },
 },

import { browser } from 'k6/browser';
import { check } from 'k6';

export const options = {

};

CORE WEB VITALS are exposed
as metrics

 thresholds: {
 checks: [‘rate>0.98'],
 browser_web_vital_ttfb: ['p(95)<100'],
 browser_web_vital_lcp: ['p(95)<4000'],
 },

 scenarios: {
 ui: {
 executor: 'constant-vus',
 vus: '20',
 duration: '15min',
 options: {
 browser: {
 type: 'chromium',
 },
 },
 },
 },

export default async function () {
 const context = await browser.newContext();
 const page = await context.newPage();

 try {
 await page.goto(baseURL);

 await Promise.all([
 page.waitForNavigation(),
 page.locator('a[title="Tickets"]').click(),
]);

 const header = await page.locator('h1').textContent();
 check(header, {
 "expected heading is found": (h) => h == 'Foo',
 });
 } finally {
 await page.close();
 }
}

The API is designed to be
compatible with PLAYWRIGHT

SCENARIO:
START OF TICKET SALE 50k visitors, 25k of those in the first 5min

HTTP PROTOCOL LEVEL TESTS
1000s OF CONCURRENT VUS

BROWSER TESTS
10-50 CONCURRENT VUS

martin-helmich/k6-har

Replay HAR files in your k6 load tests

TypeScript

https://github.com/martin-helmich/k6-har

COMPROMISE
Simulating browser requests (at scale) without using a browser:
Replay an HAR file!

https://github.com/martin-helmich/k6-har

ONLINE
or

OFFLINE?

SIZING YOUR
TESTING ENVIRONMENT

SIZING YOUR
TESTING ENVIRONMENT

KERNEL PARAMETERS
 
$ sysctl -w net.ipv4.ip_local_port_range="1024 65535"
$ sysctl -w net.ipv4.tcp_tw_reuse=1
$ sysctl -w net.ipv4.tcp_timestamps=1
$ ulimit -n 250000

SIZING YOUR
TESTING ENVIRONMENT

MEMORY CONSIDERATIONS

_ 1-5MB per VU
_ 300-500MB per VU for browser-based tests

CPU CONSIDERATIONS

_ “it depends”
_ In our case: 1500 VUs (w/ 200 reqs/iter) used 100% of 64 cores

SIZING YOUR
TESTING ENVIRONMENT

MIND YOUR BANDWIDTH!

_ also “it depends”
_ From the original scenario: 83 visits/sec × 200 MB traffic/visit ≃ 16 GB/s ≃ 130 Gbit/s

SIZING YOUR
TESTING ENVIRONMENT

RUNNING LARGE TESTS

k6 run --execution-segment=0:1/3 \  
 -o xk6-influxdb

Data sink

k6 run --execution-segment=1/3:2/3 \  
 -o xk6-influxdb

k6 run --execution-segment=2/3:1 \  
 -o xk6-influxdb

AVAILABLE TARGETS
_ CloudWatch
_ Kafka
_ InfluxDB
_ NewRelic
_ OpenTelemetry
_ Prometheus
_ TimescaleDB
_ (full list)

https://grafana.com/docs/k6/latest/results-output/real-time/

RUNNING LARGE TESTS

k6 run --execution-segment=0:1/3 \  
 -o xk6-influxdb

InfluxDB

k6 run --execution-segment=1/3:2/3 \  
 -o xk6-influxdb

k6 run --execution-segment=2/3:1 \  
 -o xk6-influxdb

KEEP IT SIMPLE,
 STUPID

RUNNING LARGE TESTS

k6 run --execution-segment=0:1/3 \  
 -o csv=results-01.csv

Jupyter

k6 run --execution-segment=1/3:2/3 \  
 -o csv=results-02.csv

k6 run --execution-segment=2/3:1 \  
 -o csv=results-03.csv

results-01.csv

results-02.csv

results-03.csv

USE WITH CAUTION
15mins of tests
-> ~30GB of result files

“I PAID FOR 64 GIGS OF RAM,
THEREFORE I WILL USE 64 GIGS OF RAM”

USE WITH CAUTION
15mins of tests
-> ~30GB of result files

VIRTUAL USERS

REQUESTS/SEC

ERRORS/SEC

SECS/REQ

LARGEST CONTENTFUL PAINT (in secs)

THINGS YOU CAN DO
WHEN YOUR LOAD TEST
FAILS

_ Throw hardware at the problem
(caution: might get expensive)

_ Make smart choices
_ Configure web server and PHP-FPM for full resource

utilization
_ Offload heavy assets into a CDN
_ Use caching proxies like Varnish

BUT WHAT ABOUT…

_ LOCUST?
_ Works very similar, uses Python as

scripting language instead of
JavaScript

_ Same as k6: Open-Source, cloud
option available

_ Written in Python (instead of Go);
might (?) be slightly less performant

_ UI by default, but can also be used
headlessly

_ Deciding factor: Personal preference

_ GATLING?
_ Works very similar, uses JavaScript or Java

as a scripting language
_ Basic open-source version available, but

many features only available in Enterprise
version

_ Deciding factor: Preference and your wallet

_ WRK?
_ Uses Lua as a scripting language
_ More for raw throughput testing, not really

optimized for complex user flows

https://locust.io
https://gatling.io
https://github.com/wg/wrk

IMPORTANT
SERVICE ANNOUNCEMENT

_ Some kinds of load tests (stress tests, or breakpoint tests) are
indistinguishable from DoS attacks.

_ If in doubt, get a PtA (Permission to Attack). (your hosting provider will thank you 😉)

_ When in the public cloud, mind your (or your client's) traffic bill.

Special thanks

https://zdrei.com/de/career-boost

https://zdrei.com/de/career-boost

https://www.mittwald.de/karriere

WE’RE HIRING

Developer Relations Engineer
Infrastructure Engineer
CMS Support Engineer
Product Owner CMS Hosting
CMS Product Marketing Manager

(all genders, on-site)

MARTIN HELMICH

m.helmich@mittwald.de
martin.helmich@typo3.org

mailto:m.helmich@mittwald.de
mailto:martin.helmich@typo3.org

